Multi-physics Modeling of Solid Oxide Fuel Cells with Parallel Oxygen Reduction Reaction Pathways

Tao Yang¹, Jian Liu¹, Shiwoo Lee^{1,2}, Harrry Finklea^{1,3}, Harry W. Abernathy^{1,2}, Gregory A. Hackett¹ ¹US Department of Energy, National Energy Technology Laboratory, Morgantown WV; ²AECOM Corporation, Morgantown WV; ³West Virginia University, Morgantown WV

Introduction

> Motivation

- As the main source of energy loss in SOFCs, oxygen reduction reaction (ORR) process of LSM based cathode is of great interest. However, the fundamentals such as kinetic mechanism of the ORR remain unclear.
- in-depth understanding of • For electrodes, a reaction model involving elementary reaction steps is more suitable than models for global reactions, e.g. Butler-Volmer model.
- calibration of multistep ORR • The mechanism is lacking in the past literature due to the incredible complexity from a large number of parameters.

\succ Purpose of the study

• A comprehensive numerical model with oxide fuel cell (SOFC) button cell data.

Parallel pathways of ORR mechanism

\succ Reaction rates of elementary steps

$$r_{S1} = k_{S1} \Gamma \theta_S P_{O_2}^{\frac{1}{2}} - k_{S1}^{-} \Gamma \theta_{O_{ad}}$$

$$r_{S2} = k_{S2} \Gamma \theta_{O_{ad}} \exp(-\alpha f E_S) - k_{S2}^{-} \Gamma \theta_{O_3}^{-}$$

$$r_{S3} = k_{S3} \Gamma \theta_{O_{ad}} - k_{S3}^{-} \Gamma \theta_{O_{tpb}}^{-}$$

$$r_{S4} = k_{S4} \Gamma \theta_{O_{tpb}} C_{V,YSZ} \exp(-\alpha f E_S) - k_{S3}^{-}$$

$$r_{B3} = k_{B3} \Gamma \theta_{O_{ad}} C_{V,LSM} \exp(\alpha f E_b) - k_{B}^{-}$$

$$r_{B4} = k_{B4} C_{V,YSZ} (cto - C_{V,LSM}) \exp(-2\alpha E_S)$$

This project was supported in part by an appointment to the Internship/Research Participation Program at the National Energy Technology Laboratory, U.S. Department of Energy, administered by the Oak Ridge Institute for Science and Education."

Multi-Physics Modeling

> Sketch of button cell model & governing equations

Charge conservation

nain	phase	governing equations		
hode	LSM	$a_{int,c}C_{DL,c}\frac{\partial}{\partial t}(\varphi_c-\varphi_i)+\nabla\cdot(-\sigma_c\nabla\varphi_c)=i_{Fc}$		
	YSZ	$a_{int,c}C_{DL,c}\frac{\partial}{\partial t}(\varphi_i-\varphi_c)+\nabla\cdot(-\sigma_i\nabla\varphi_i)=-i_{Fc}$		
trolyte	YSZ	$\nabla \cdot (-\sigma_i \nabla \varphi_i) = 0$		
ode	YSZ	$a_{int,a}C_{DL,a}\frac{\partial}{\partial t}(\varphi_i-\varphi_a)+\nabla\cdot(-\sigma_i\nabla\varphi_i)=-i_{Fa}$		
	Ni	$a_{int,a}C_{DL,a}\frac{\partial}{\partial t}(\varphi_a-\varphi_i)+\nabla\cdot(-\sigma_a\nabla\varphi_a)=i_{Fa}$		

$$\varepsilon \frac{\partial \phi}{\partial t} = \nabla \cdot \left(D_{\phi}^{eff} \nabla \phi \right) - S_{\phi}$$

> Calibrated simulations for various air/fuel supply conditions

Research & Innovation Center

Results and Analysis

Calibrated V-I curves and impedance behavior for three air/fuel supply conditions and impedance contribution from electrodes

> Tuned parameters and comparison to literature results

parameters	variables & unites	present study	li
between LSM and Pore	$a_{LP} (m^{-1})$	7.414×10^{6}	1:
between LSM and YSZ	$a_{LY}(m^{-1})$	7.414×10^{6}	1:
pacitance	$\boldsymbol{C_{DL,c}} \ (F \ m^{-2})$	2.975	
oefficient	$D_{b} (m^{2} s^{-1})$	1×10^{-9}	1 ×
n coefficient	$\boldsymbol{D_s} \ (m^2 \ s^{-1})$	1×10^{-9}	1 ×
ption sites at LSM/Pore interface	Γ (mol m ⁻²)	1×10^{-5}	1 ×
centration of adsorbed surface oxygen ion	$C_{O_{eq}}$ (mol m ⁻²)	3×10^{-6}	1 ×
centration of adsorbed surface oxygen ion at 3PB	$C_{O_{TPB,eq}}(mol \ m^{-2})$	3×10^{-7}	
orbed oxygen on LSM	$\boldsymbol{\theta}_{\boldsymbol{0},\boldsymbol{eq}}$	0.03	
centration of oxygen vacancy in LSM	$C_{V,LSM,eq} \ (mol \ m^{-3})$	1×10^{-1}	1 ×
centration of oxygen vacancy in YSZ	$C_{V,YSZ,eq} \ (mol \ m^{-3})$	5×10^{3}	
onstants of S1 at reference state	$k_{S1}^{-}(s^{-1})$	6.002×10^{3}	
reference state	$r_{S2,0} \ (mol \ m^{-2} \ s^{-1})$	3.001×10^{-4}	1 ×
nstants of S3 at reference state	$k_{S3} (s^{-1})$	6.002×10^2	
reference state	$r_{S4,0} \ (mol \ m^{-2} \ s^{-1})$	2.5×10^{-3}	
t reference state	$r_{B3,0} \ (mol \ m^{-2} \ s^{-1})$	1.05×10^{-4}	1 ×
t reference state	$r_{B4,0} \ (mol \ m^{-2} \ s^{-1})$	1×10^{-2}	1 ×